Timbre (音色)#
音源を読み込む#
import librosa
Fs = 11025
x, Fs = librosa.load('FMP_C1_F23_Piano.wav', sr=Fs)
len(x), len(x)/Fs
(45504, 4.12734693877551)
音源を再生する#
import IPython.display as ipd
ipd.display(ipd.Audio(data=x, rate=Fs))
波形を表示する#
import libfmp.c1
%matplotlib inline
import matplotlib.pyplot as plt
libfmp.b.plot_signal(x, Fs=Fs, figsize=(8,2), ylabel='Amplitude', title='Piano')
plt.show()

libfmp.b.plot_signal(x, Fs=Fs, figsize=(8,2), ylabel='Amplitude', title='Piano')
plt.xlim(1.2, 1.3)
plt.show()

スペクトログラムを表示する#
import numpy as np
import matplotlib.pyplot as plt
def plot_spectrogram(x, Fs=11025, N=4096, H=2048, figsize=(4, 2)):
"""Computation and subsequent plotting of the spectrogram of a signal
Notebook: C1/C1S3_Timbre.ipynb
Args:
x: Signal (waveform) to be analyzed
Fs: Sampling rate (Default value = 11025)
N: FFT length (Default value = 4096)
H: Hopsize (Default value = 2048)
figsize: Size of the figure (Default value = (4, 2))
"""
# N, H = 2048, 1024
X = librosa.stft(x, n_fft=N, hop_length=H, win_length=N, window=np.hanning) # not 'hamming'
Y = np.abs(X)
plt.figure(figsize=figsize)
librosa.display.specshow(librosa.amplitude_to_db(Y, ref=np.max),
y_axis='linear', x_axis='time', sr=Fs, hop_length=H) # cmap='gray_r'
plt.ylim([0, 3000])
# plt.colorbar(format='%+2.0f dB')
plt.xlabel('Time (seconds)')
plt.ylabel('Frequency (Hz)')
plt.tight_layout()
plt.show()
plot_spectrogram(x, Fs=Fs, N=1024, H=256, figsize=(4, 3))

Note
スペクトログラムは、時間 (横軸)、周波数(縦軸)、信号成分の強さ(色)の三次元グラフです
他の音源についてもやってみる#
FMP_C1_F23_Piano.wav
FMP_C1_F23_Trumpet.wav
FMP_C1_F23_Violin.wav
FMP_C1_F23_Flute.wav
x, Fs = librosa.load('FMP_C1_F23_Trumpet.wav', sr=Fs)
plot_spectrogram(x, Fs=Fs, N=1024, H=256, figsize=(4, 3))

x, Fs = librosa.load('FMP_C1_F23_Violin.wav', sr=Fs)
plot_spectrogram(x, Fs=Fs, N=1024, H=256, figsize=(4, 3))

x, Fs = librosa.load('FMP_C1_F23_Flute.wav', sr=Fs)
plot_spectrogram(x, Fs=Fs, N=1024, H=256, figsize=(4, 3))
